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Abstract. We present schemes for the generation and evaluation of continuous variable entanglement of
bright optical beams and give a brief overview of a variety of optical techniques and quantum communi-
cation applications on this basis. A new entanglement-based quantum interferometry scheme with bright
beams is suggested. The performance of the presented schemes is independent of the relative interference
phase which is advantageous for quantum communication applications.

PACS. 03.67.Hk Quantum communication – 42.50.Dv Nonclassical field states; squeezed, antibunched,
and sub-Poissonian states; operational definitions of the phase of the field; phase measurements

1 Introduction

Quantum information processing using continuous vari-
ables [1–3] has emerged as an alternative approach to
quantum information with single photons and atoms de-
scribed with discrete variables. The main motivation for
this new approach is the availability of controlled sources,
efficient detection systems and easy-to-handle processing
using linear elements. The price one has to pay for these
advantages is always non-maximal entanglement. What is
continuous variable entanglement about? We first give a
short introduction providing an intuitive picture of how
continuous variable entanglement manifests itself. Con-
sider two spatially separated optical modes j = 1, 2. The
involved optical fields can be fully described by means
of field quadratures [4], the amplitude quadrature X̂j =
â†j + âj and the phase quadrature Ŷj = i(â†j − âj). They
obey the following commutation rules:[

X̂j, Ŷk
]

= iδjk, j, k = 1, 2. (1)

These commutation relations leave the possibility for com-
bined variables of both modes to commute:[

X̂1 + X̂2, Ŷ1 − Ŷ2

]
= 0. (2)

Hence quantum states are possible, for which all the vari-
ables X̂j, Ŷj are uncertain, but certain joint variables of
two optical modes together are both well defined:

X̂1 + X̂2 → well defined,

Ŷ1 − Ŷ2 → well defined. (3)
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In the quantum optical context this is known as two-mode
squeezing for X̂ or Ŷ [4]. The measure for the degree of
two-mode squeezing is the variances of the sum or differ-
ence signal of two modes, which approach zero for perfect
squeezing:

V (X̂1 + X̂2)→ 0,

V (Ŷ1 − Ŷ2)→ 0, (4)

where V (A) = 〈Â2〉 − 〈Â〉2 denotes a variance of an oper-
ator Â. Equations (4) also represent a measure for quan-
tum correlations between two spatially separated optical
modes, i.e. for continuous variable entanglement.

2 Experimental evaluation of continuous
variable entanglement

Can we indeed associate such kind of correlations with en-
tanglement? An entangled state is a non-separable quan-
tum state. It means that the state of a system cannot be
represented as a convex sum of product states of two sub-
systems. The necessary and sufficient condition for sepa-
rability of a system for discrete variables is given by the
Peres-Horodecki criterion [5]. This condition has been re-
cently extended to continuous variable two mode Gaussian
states [6,7], like two mode squeezed states (4). The crite-
rion derived by Duan et al. has an attractive potential
for experimental quantum communication as it can be ex-
pressed in terms of observable quantities. They can then
be measured using the conventional toolbox of experimen-
tal quantum optics. In this spirit we re-express the results
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of [6,7] in terms of the amplitude X̂j = â†j + âj and the
phase Ŷj = i(â†j−âj) quadratures of bright beams j = 1, 2.
Because of the high intensity of the optical fields involved,
we use the linearization approach throughout the paper:
X̂j = 〈Xj〉+ δX̂j, Ŷj = 〈Yj〉+ δŶj . The entangled quanti-
ties are then the quantum uncertainties in the respective
field quadratures. The non-separability criterion for the
quantum state of two optical modes requires:

V ±sq (δX) + V ∓sq (δY ) < 2, (5)

V ±sq (δX) =
V (δX̂1 ± gδX̂2)

V (X̂1,SN + gX̂2,SN)
, (6)

V ∓sq (δY ) =
V (δŶ1 ∓ gδŶ2)

V (Ŷ1,SN + gŶ2,SN)
(7)

where g is a variable gain. The variances labeled “SN”
correspond to the shot noise level of respective beams
which marks a boundary between classical and quan-
tum regime. The upper (lower) signs hold for the anti-
correlated (correlated) amplitude quadratures and corre-
lated (anti-correlated) phase quadratures. The squeezing
variances in equations (5–7) are the normalized variances
of equation (4). Vsq = 1 corresponds, e.g. to coherent
states in both optical modes and Vsq < 1 corresponds to
two mode squeezing, hence the name squeezing variances.
They are quantities measurable in an experiment and will
be used throughout this paper for the experimental eval-
uation of continuous variable entanglement.

2.1 Entanglement of amplitude and phase quadratures

The generation of entanglement with continuous vari-
ables typically uses optical parametric down conversion
in a sub-threshold OPO. This process creates two vac-
uum states with quantum correlated amplitude and anti-
correlated phase quadratures or vice versa [8–10]. Another
promising scheme for the generation of EPR-entangled
beams utilizes the superposition of two independently
squeezed bright light fields to create quantum correla-
tions ([11,12] and Fig. 1a). For this purpose the opti-
cal phases of the incoming fields are chosen such that
the initial fields acquire a phase difference of π/2 for the
linear interference at a beam splitter. This scheme was
recently implemented using the Kerr-nonlinearity of an
optical fibre to produce two bright amplitude squeezed
pulsed light fields [13]. Interference of these two beams
generates EPR-entanglement with anti-correlated ampli-
tude quadrature and correlated phase quadrature with
V ±sq (δX) + V ∓sq (δY ) = 0.80± 0.06 [13].

2.2 Polarization entanglement

Entanglement of the amplitude and phase quadratures is
familiar but of course not the only possible type of contin-
uous variable entanglement. Another promising set of con-
tinuous variables are the polarization variables, the quan-
tum Stokes operators (see [14] and references therein).
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Fig. 1. Schemes for generation of continuous variable entan-
glement by linear interference of squeezed beams: (a) entan-
glement of amplitude and phase quadratures; (b) continuous

variable polarization entanglement. Operators â, b̂ describe in-
put bright squeezed beams, indices x, y denote two orthogonal
polarization modes, 50/50 is a beam splitter with a respective
splitting ratio and PBS stands for a polarization beam splitter.

The Stokes operators are defined in analogy to the
Stokes parameters in classical optics:

Ŝ0 = n̂x + n̂y, (8)

Ŝ1 = n̂x − n̂y, (9)

Ŝ2 = â†xây + â†yâx, (10)

Ŝ3 = i
[
â†yâx − â†xây

]
(11)

where â†k (âk) are photon creation (annihilation) operators
and n̂k = â†kâk is the photon number operator in polar-
ization mode k with the basic set of the orthogonal modes
linearly polarized along x and y-directions (k = x, y).
The operators âk, â

†
l obey the usual commutation relation

[âk, â
†
l ] = δkl, (k, l = x, y). The operators Ŝj (j = 1, 2, 3)

satisfy the commutation relations of the Lie algebra of the
SU(2) group, for example:[

Ŝ2, Ŝ3

]
= i2Ŝ1. (12)

The other relations are obtained from (12) by cyclic per-
mutation of the labels.

There are quantum uncertainties associated with each
of the Stokes operators (8–11). A quantum state of an
optical field is said to be polarization squeezed if the un-
certainty in one of the Stokes operators is reduced below
that of coherent light, i.e. Vj ≤ V coh (j = 1, 2, 3), at the
cost of increased uncertainty in the other Stokes param-
eters [14]. Such nonclassical polarization squeezed states
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can be generated by superimposing two orthogonally po-
larized amplitude squeezed light beams on a polarizing
beam splitter [14].

Polarization entanglement of continuous variables can
in turn be generated by linear interference of two polariza-
tion squeezed beams. This is in analogy to the interference
of amplitude squeezed beams [12,13] for the generation
of bright EPR entanglement of the amplitude and phase
quadratures (Fig. 1).

For bright beams, polarization entanglement implies
quantum correlations of the uncertainties of the Stokes
operators in two spatially separated optical modes Â, B̂
(Fig. 1b). Let us assume that polarization squeezed
beams for entanglement generation are produced by in-
terference of orthogonally polarized amplitude squeezed
beams with equal squeezing V (δX) < 1 in each of the
four input modes (Fig. 1b). It follows from (8–11, 12)
that for input beams of equal amplitude only operators
Ŝ1A,B and Ŝ3A,B are conjugate variables because only

V (S3)V (S1) ≥
∣∣∣〈Ŝ2〉

∣∣∣ 6= 0. The non-separability of the

quantum polarization state of two modes Â and B̂ then
means [14]:

V +
sq (δS1) + V −sq (δS3) < 2 (13)

with the squeezing variances equal to:

V +
sq (δS1) =

V
(
δŜ1A + g δŜ1B

)
V (Ŝ1A,SN + g Ŝ1B,SN)

= V (δX), (14)

V −sq (δS3) =
V
(
δŜ3A − g δŜ3B

)
V
(
Ŝ3A,SN + g Ŝ3B,SN

) = V (δX). (15)

The important advantage of such non-classical polariza-
tion states is that it is possible to measure the relevant
conjugate variables by direct detection only, using linear
optical elements.

3 Optical techniques in direct detection

The use of bright beams for entanglement generation al-
lows the implementation of a range of optical techniques
with a particularly simple detection system. Unlike many
schemes described elsewhere, those proposed here do not
require explicit measurements of the phase quadrature of
the light field. This advantage is brought about by the
use of a simple interferometric setup which avoids more
cumbersome measurements, in particular those involving
local oscillator fields. In the following sections we describe
these techniques in detail using the entanglement of field
quadratures as an example (Sect. 2.1 and Fig. 1a).

Prior to doing this it is worthwhile to contrast quadra-
ture entanglement and polarization entanglement. For po-
larization entanglement (Sect. 2.2 and Fig. 1b) the explicit
measurement of all the relevant conjugate variables and of
their variances can be performed in direct detection [14].
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Fig. 2. Direct detection of the non-separability criterion.

For example, it is straightforward to record V +
sq (δS1),

V −sq (δS3) and calculate (13). It is thus not necessary to
detect the non-separability of polarization state in an in-
direct way. If the schemes illustrated in the following sec-
tions were though to use polarization entanglement, they
would be more sophisticated, requiring additional linear
elements, such as half-wavelength plates and polarizers,
to record the variances of the Stokes operators [14].

Thus both quadrature and polarization entanglement
have their advantages and disadvantages. These determine
the scope of applications of the two different entangle-
ment types as discussed in Sections 2.1 and 2.2. Contin-
uous variable polarization entanglement is best suited to
schemes requiring explicit measurements of the involved
conjugate variables, e.g. to quantum cryptography. In con-
trast, quadrature entanglement is more appropriate for
schemes involving direct intensity detection, e.g. quantum
dense coding, quantum teleportation.

3.1 Measuring non-separability of a quantum state

In this section we show how the non-separability of the
quantum states described in Sections 2.1 and 2.2 can
be verified in an experiment. To determine the non-
separability criterion of equation (5), the EPR source is
treated as a black box. We would like to test now for con-
tinuous variable entanglement of the two output optical
modes of Section 2.1 and Figure 1a. These two modes are
superimposed at a beam splitter (Fig. 2). The field opera-
tors of the beams after this interference are denoted ĉ, d̂.
To adjust the relative interference phase, a variable phase
shift θ can be introduced in one of the arms. The bal-
anced detection is performed in one of the output arms, ĉ
or, equivalently, d̂. Difference and sum photocurrents are
recorded and the relative phase θ is scanned. The differ-
ence photocurrent provides the shot noise level reference:

V (δXc,d,SN) = α2 (1± cos θ) . (16)

The two signs refer to the two complementary out-
puts. The sum photocurrent delivers the amplitude noise
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Fig. 3. Setup for quantum interferometry.

variance of the signal in the output ĉ or d̂:

〈(δXc,d)2〉 =
1
2
α2
[
(1± cos θ)2

V +
sq (δX) + sin2 θ V −sq (δY )

]
. (17)

From the measurements (16, 17) the normalized noise vari-
ance can be inferred:

V (δXc,d) =
〈(δXc,d)2〉
V (δXc,d,SN)

=

1
2

[
(1± cos θ) V +

sq (δX) +
sin2 θ

(1± cos θ)
V −sq (δY )

]
. (18)

It contains the information about both relevant squeezing
variances V +

sq (δX), V −sq (δY ) which characterize the quan-
tum correlations between optical modes 1, 2 (Fig. 2). For
θ = π/2 the measured noise variance (18) is directly pro-
portional to the Peres-Horodecki criterion (5) for contin-
uous variables:

V (δXc,d) =
1
2
[
V +

sq (δX) + V −sq (δY )
]
. (19)

If the interfering amplitude squeezed beams are of equal
squeezing, the output entangled beams have symmetric
circular uncertainty regions and V +

sq (δX) = V −sq (δY ) =
Vsq. Then equation (18) takes the form:

V (δXc,d) =
〈(δXc,d)2〉
V (δXc,d,SN)

= Vsq (20)

and the non-separability condition reads: Vsq < 1 inde-
pendent of the relative interference phase θ. Using (19)
or (20), the non-separability of the state can be reliably
verified experimentally using the interferometric scheme
of Figure 3.

3.2 Quantum interferometry

The interferometric detection of the non-separability crite-
rion provides a new and interesting insight into the perfor-
mance of the scheme (Fig. 2) as a setup for high-precision
measurements of small phase modulations. There are
quantum limitations to the sensitivity of optical inter-
ferometers in addition to mechanical, thermal, and other

effects. For example, the standard quantum limit for
minimal resolvable phase modulations derived from the
Heisenberg uncertainty principle reads:

δθmin =

√
1
n

(21)

where n is a total photon number in the measured mode.
Quantum interferometry attempts to exploit non-classical
states of light to go beyond this standard quantum limit
in high-sensitive measurements [4,15].

Consider the operation of the setup depicted in Fig-
ure 3 in more detail [16]. Compared to the setups in Fig-
ures 1 and 2, the scheme of Figure 3 in addition allows
the phase ϕ of the first interference to be controlled. That
means that the degree of entanglement between the output
beams 1 and 2 is tunable. The noise variances and mean
value of the signal at the output of the interferometer are
recorded by balanced detection in at least one of the out-
put ports (see also Fig. 2). From these measurements the
noise variance of the signal normalized to its shot noise
level can be inferred: V (δXc,d) = 〈(δXc,d)2〉/V (δXc,d,SN).
In this way the noise reduction at the output of the inter-
ferometer can be evaluated with respect to the interference
phases ϕ and θ. This is illustrated in Figure 4.

For the phase of the first interference equal to zero,
ϕ = 0, no entanglement is generated. In this case the
setup (Fig. 3) represents just a trivial Mach-Zehnder in-
terferometer with two squeezed inputs transformed to two
squeezed outputs ĉ, d̂, if the phase of the second interfer-
ence is adjusted properly (Fig. 4a). The phase relation
equal to ϕ = π/2 corresponds to the maximal available
entanglement between beams 1 and 2 (Fig. 4c). This is
the situation described in the previous section (Fig. 2).
The dependence of the second interference on the phase is
given then by equation (20). Note that noise reduction ob-
served for ϕ = π/2 is insensitive to the phase θ: the ratio
V (δXc,d) = 〈(δXc,d)2〉/V (δXc,d,SN) < 1 remains constant
and less than unity for all values of θ (Fig. 4c). Figure 4b
shows the intermediate situation with a close to maximal
degree of entanglement (see also [13]).

What do all these noise variances have to do with quan-
tum interferometry? The proper analysis of the curves
gives an important hint: the main mechanism enabling
the suppression of the resolution limit below that of equa-
tion (21) is the quantum correlation, i.e. entanglement,
between beams 1 and 2. To make this statement compre-
hensive, let us discuss Figure 4 again in view of quantum
interferometry.

Recall that the limit for minimal resolvable phase mod-
ulation can be derived in terms of signal-to-noise ratio [4]:

SNR =
〈n̂〉√
V (n)

=
〈X̂c,d〉√
V (δXc,d)

(22)

where n̂ = ĉ†ĉ is the photon number operator in mode
ĉ with the mean value 〈n̂〉 = n (analogously for d̂). The
smallest detectable phase shift is defined to be that for
which SNR = 1.



N. Korolkova et al.: Quantum techniques using continuous variables of light 233

5

4

3

2

1

n
o
is

e
p
o
w

e
r

[a
.
u
.]

θ

ϕ π= /4

0 π 2π

5

4

3

2

1

n
o
is

e
p
o
w

e
r

[a
.
u
.]

θ

ϕ π= /2

5

4

3

2

1

n
o
is

e
p
o
w

e
r

[a
.
u
.]

θ

ϕ = 0
a)

b)

c)

Fig. 4. Intensity noise variances (solid line) and corresponding
shot noise levels (dashed) at the output of the interferometer in
Figure 3 versus variable phase shift θ for different values of ϕ.
The curves are plotted for 4 dB input squeezing (see Ref. [13]).

The analysis of Figure 4 on this basis yields the follow-
ing results. For the phase relation ϕ = 0 (Fig. 4a) there is
no interferometric performance of the setup as the signal is
zero. For Figure 4b minimal resolvable phase modulations
around θ = 0 + kπ are:

δθmin =

√
2V +

sq (δX)
n

(23)

where V +
sq (δX) = V (δX) is the squeezing variance de-

termining the maximal available quality of entanglement
for the input squeezed beams with V (δX). For the sit-
uation corresponding to maximal available entanglement
between the beams (Fig. 4c) the minimal resolvable phase

modulations around θ = π/2 + kπ drop out as:

δθmin =

√
V +

sq (δX)
n

· (24)

The setup thus reaches the best performance for the best
entanglement.

First experiments on quantum interferometry were
performed using squeezed vacuum at the second normally
not used input of a Mach-Zehnder or a Michelson inter-
ferometer [18,19]. The important requirement for reaching
sub-shot noise operation is that the squeezed quadrature
of the second input port is π/2 out of phase with the coher-
ent excitation of the first input port. If one has two intense
beams at each input port this condition can still be ful-
filled [17]. The scheme considered in Figure 3 is closely re-
lated to quantum interferometry with two Fock states [20]
and to other interferometric setups used before [4,17,20],
i.e. it uses two ϕ = π/2 shifted bright squeezed beams as
input modes. However, it possess several novel features.
First, noise reduction performance of the setup is insen-
sitive to the phase θ for symmetric beams (Fig. 4c). Sec-
ond, so far the ability to suppress the quantum limit of
the interferometer was always related to reduced noise in
the input fields. Here it is clearly demonstrated that it
is the quantum correlations, quantum entanglement, be-
tween the interferometer arms which is responsible for the
enhanced resolution (see also [21]). Third, it is not neces-
sary to go for the detection of the difference signal of two
outputs ĉ†ĉ − d̂†d̂ because the measurement in one arm
provides the same precision. Fourth, as the noise reduc-
tion is phase insensitive, one can choose an arbitrary point
of operation θ 6= π/2, 0 which might be advantageous in a
particular application.

3.3 Quantum dense coding

The phase-insensitive noise reduction performance of the
interferometric scheme (Fig. 3) makes it a promising setup
for dense coding [22,23]. Quantum dense coding was first
suggested [22] and realized in an experiment [25] for dis-
crete quantum variables like polarization states of entan-
gled photon pairs. In this case it aims to enhance the
classical information capacity of quantum communica-
tion channels beyond the Holevo’s bound [24]. Recently
the idea of quantum dense coding was extended to the
quadrature components of the electromagnetic field us-
ing entangled light beams as quantum channel [23]. For
such continuous variables, dense coding refers to the abil-
ity to read out amplitude and phase modulations with
a precision below the limit given by the Heisenberg un-
certainty relation. For large photon numbers, the chan-
nel capacity of the scheme [23] approaches twice that of
classical coherent-state communication [23]. The first ex-
perimental implementation of quantum dense coding with
bright entangled beams was proposed in reference [26] and
recently implemented [27].
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Fig. 5. Setup for quantum dense coding with bright entangled
beams.

Figure 5 shows the interferometric setup (Fig. 3) mod-
ified to implement dense coding using intense entangled
beams. This corresponds to the setup shown in refer-
ence [26] where this scheme was only briefly addressed.
The analysis was based on the squeezing characteristics
of the input beams for entanglement generation. Here we
would like to emphasize the role of the quantum correla-
tions V +

sq (δX), V −sq (δY ) on the scheme performance, which
means on being able to read out amplitude and phase
modulations with a precision below the Heisenberg limit.
We assume V +

sq (δX) = V −sq (δY ) = Vsq which is required
for the phase independent performance of the scheme. The
balanced detection of the combined mode of both out-
puts delivers the information about small imposed ampli-
tude δXm and phase δYm modulations:

V + = α2 (Vsq + V (δXm)) , (25)

V − = α2 (Vsq + V (δYm)) (26)

where V ± are the noise variances recorded in the sum and
difference detector channels, respectively. The Heisenberg
relation imposes a lower resolution bound for coherent
communication and there will be Vcoh = 1 in the place
of Vsq in equations (25, 26). Quantum EPR-like correla-
tions between the bright beams in the two interferometer
arms imply Vsq � 1. Hence the use of quantum entangle-
ment enhances the resolution of quadrature modulations
beyond the Heisenberg limit for all values of θ (25, 26).
This enables quantum dense coding independent of the in-
terference phase θ. The phase-insensitivity eliminates the
need for extensive setup stabilization. It makes the scheme
more reliable and easier to handle, in particular for the
communication over long distances.

4 Conclusions

The generation and experimental characterization of
bright beam entanglement has been reviewed. We report
on an entanglement-based interferometric setup using in-
tense optical fields (Figs. 2, 3 and 5). This setup can be
modified to implement various optical techniques ranging
from entanglement evaluation through quantum interfer-
ometry and dense coding to quantum teleportation [2,12].
In all these applications only direct detection is required

without the need for local oscillator fields. The role of
quantum EPR-like correlations, Vsq, was explicitly shown,
as well as phase-insensitive performance of the schemes
(Figs. 2, 3 and 5) provided that there is equal squeezing
in the input beams.

A phase-insensitive scheme for quantum interferome-
try with bright entangled beams is proposed (Fig. 3). The
resolution limit for phase modulations can be suppressed

up to
√
Vsq(δX)/n as compared to

√
1/n where Vsq(δX)

is determined by the quantum amplitude correlations of
the entangled beams.

In the schemes outlined above it was sufficient to infer
the information about the phase quadrature from the noise
variances obtained in direct amplitude detection. How-
ever, there are a number of quantum information proto-
cols which require the explicit measurement of all involved
conjugate quantum variables, for example, quantum key
distribution with continuous variables ([28,29] and refer-
ences therein). Continuous variable polarization entangle-
ment [14] can be extremely useful for such purposes. For
this type of entanglement all the relevant variables can
be detected without the need for auxiliary local oscillator
fields or other evolved measurement techniques.
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References

1. S. Lloyd, S.L. Braunstein, Phys. Rev. Lett. 82, 1784
(1999).

2. S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869
(1998).

3. M.D. Reid, P.D. Drummond, Phys. Rev. Lett. 60, 2731
(1988); M.D. Reid, Phys. Rev. A 40, 913 (1989).

4. D.F. Walls, G.J. Milburn, Quantum Optics (Springer Ver-
lag, Berlin, Heidelberg 1994).

5. A. Peres, Phys. Rev. Lett. 77, 1413 (1996); M. Horodecki,
P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996);
P. Horodecki, Phys. Lett. A 232, 333 (1997).

6. L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev.
Lett. 84, 2722 (2000).

7. R. Simon, Phys. Rev. Lett. 84, 2726 (2000).
8. Z.Y. Ou, S.F. Pereira, H.J. Kimble, K.C. Peng, Phys. Rev.

Lett. 68, 3663 (1992).
9. A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs,

H.J. Kimble, E.S. Polzik, Nature 283, 706 (1998).
10. Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, K. Peng, Phys.

Rev. A 62, 023813 (2000).
11. U. Leonhardt, Measuring the quantum state of light (Cam-

bridge University Press, 1997).
12. G. Leuchs, T.C. Ralph, Ch. Silberhorn, N. Korolkova, J.

Mod. Opt. 46, 1927 (1999).
13. Ch. Silberhorn, P.K. Lam, O. Weiß, F. König, N.

Korolkova, G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001).
14. N. Korolkova, G. Leuchs, R. Loudon, T.C. Ralph, Ch.

Silberhorn, Phys. Rev. A (2001) submitted.



N. Korolkova et al.: Quantum techniques using continuous variables of light 235

15. C.M. Caves, Phys. Rev. D 23, 1693 (1981).
16. Ch. Silberhorn, N. Korolkova, Entanglement, quantum

interferometry and dense coding with intense light
pulses, invited talk at Conference on Laser and Electro-
Optics/Europe-European Quantum Electronics Confer-
ence CLEO, Munich, Germany, June 18-22, 2001,
CLEO/Europe-EQEC Focus Meeting Conference Digest,
p. 309.

17. S. Inoue, Y. Yamamoto, G. Bjork, Sub-shot-noise inter-
ferometer driven by amplitude squeezed light from an
injection-locked semiconductor laser, International Quan-
tum Electronics Conference IQEC 1996, Sydney, Aus-
tralia, July 14-19, 1996, IQEC’1996 Technical Digest,
ThH3, p. 210

18. M. Xiao, L.-A. Wu, H.J. Kimble, Phys Rev. Lett. 59, 278
(1987).

19. S. Inoue, Y. Yamamoto, Phys. Lett. A 236, 183 (1997).
20. M.J. Holland, K. Burnett, Phys. Rev. Lett. 71, 1355

(1993).
21. T. Kim, O. Pfister, M.J. Holland, J. Noh, J.L. Hall, Phys.

Rev. A 57, 4004 (1998).
22. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881

(1992).
23. S.L. Braunstein, H.J. Kimble, Phys. Rev. A 61, 042302

(2000).
24. A.S. Holevo, IEEE Trans. Inf. Theory 44, 269 (1998).
25. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Phys.

Rev. Lett. 76, 4656 (1996).
26. J. Zhang, K. Peng, Phys. Rev. A 62, 064302 (2000).
27. Y. Zhang, C. Xie, K. Peng, Quantum Semiclass. Opt. 3,

293 (2001).
28. S. Lorenz, Ch. Silberhorn, N. Korolkova, R.S. Windeler,

G. Leuchs, Appl. Phys. B (2001) in press.
29. Ch. Silberhorn, N. Korolkova, G. Leuchs, Quantum

cryptography with bright entangled beams, Interna-
tional Quantum Electronics Conference IQEC 2000, Nice,
France, September 10-15, 2000, IQEC’2000 Conference
Digest, QMB6, p. 8; e-print ArXiv: quant-ph/0109009

(2001).


